

The Taxi Exchange Point

Operator's Guide

Version Description Author Date

1.0 Initial David Beaudoin 16/08/2017

1.1 Révision Stéphane Leblanc 07/09/2017

1.2 Révision David Beaudoin 25/01/2018

1.3 Révision Sébastien Blais 22/11/2018

1.4 Taxi position and status Mandatory column Gaston-Andres Bellei 06/12/2019

1.5 Sections 2.4 and 3.3 updated Gaston-Andres Bellei 15/06/2020

1.6 Sections 2.4 and 4.1 updated Gaston-Andres Bellei 21/07/2020

1.7 Sections 2,1, 2.2, 2.3, 2.4 and 4.1 updated Gaston-Andres Bellei 29/07/2020

1.8 Updated example column in section 4.1 Brian Di Croce 19/08/2020

1.9 Various text corrections Gaston-Andres Bellei 10/11/2020

2.0 Bill 17 compliance added and general formatting Gaston-Andres Bellei 20/11/2020

Table of contents

1. Introduction 1
1.1 Overview 1
1.2 Process of integration 1
1.3 Mandatory HTTP Headers 2
1.4 Authentication 2
1.5 APIs implementation 2

2. Contextual Data 2
2.1 Registering a Driver 2
2.2 Registering a Vehicle 5
2.3 Registering a Owner/license (ADS) 10
2.4 Declaring a Taxi 14

3. Taxi Positions and Status 18
3.1 Updating the location and status of a taxi 18
3.2 Taxis Status 20
3.3 Updating the status of a taxi 20
3.4 Querying a taxi 21

4. Hails 23
4.1 Hail Status 23
4.2 Receiving a Hail 26
4.3 Querying the Status of a Hail 27
4.4 Updating a Hail 27

5. Tests 28
5.1 Contextual Data Tests 29

5.1.1 The license plate of a vehicle changes 29
5.2 Hail Tests 32

5.2.1 Overview 32
5.2.2 Faking a Search Engine 32
5.2.3 Happy Path 39
5.2.4 Declined by taxi 41
5.2.5 Accepted by taxi after timeout 42
5.2.6 Canceled by taxi 44
5.2.7 Canceled by client 46
5.2.8 Failure example 48

5.3 Bill 17 Tests 49
5.3.1 Migrate a driver when the vehicles he drives have not been migrated yet 51
5.3.2 Migrate a vehicle when the drivers who drive it have been migrated 55
5.3.3 Migrate a vehicle and the drivers who drive it at the same time 59
5.3.4 Unallowed migration paths 63
5.3.5 Many vehicles can have the same owner 64

1. Introduction

1.1 Overview
The Taxi Exchange Point (TXP) aim is to connect taxis and their clients. Clients can use taxis
search engines to hail taxis geolocated by taxis operators. The TXP mediates between search
engines and operators.

All interactions with the TXP can be made from the central infrastructure of taxi operators, this also
includes communication of the location and availability of taxis (using on-board equipment in the
taxi).

1.2 Process of integration
To integrate with the TXP, the operator must send its contextual data (section 2) and the position
and status of its taxis (section 3). Once the development is done in the acceptance environment, the
operator must contact the TXP administrator. When the TXP administrator has verified that the
operator is properly integrated, an API key will be sent to the operator for the production
environment.

Sending the positions and status of the taxis is the first milestone for the operator. The law will
eventually state that the taxi owners must send the position and the status of their taxis to the TXP
via an authorized taxi operator. Operators will be given an API key for the production environment
even if they cannot receive hails from the TXP (section 4).

Once the operator has shown that its system can receive hails from the TXP in the acceptance
environment, the TXP administrator must be contacted. The TXP administrator will verify that the
operator can receive hails properly and will configure the TXP in order to send hails to the operator
in the production environment.

The TXP administrator can be contacted at: support.taxi.exchange.point@montreal.ca

Here are the links to communicate with the TXP services:
Acceptance : https://taximtl.accept.ville.montreal.qc.ca
Production : https://taximtl.ville.montreal.qc.ca

mailto:support.taxi.exchange.point@montreal.ca
https://taximtl.accept.ville.montreal.qc.ca/
https://taximtl.ville.montreal.qc.ca/
https://taximtl.ville.montreal.qc.ca/

1.3 Mandatory HTTP Headers
The following HTTP Headers are mandatory for all requests to the TXP REST APIs:

1.4 Authentication
Authentication of your application is done for each query to the TXP by including a HTTP header
X-API-KEY.

API keys are available for accredited developers and will be distributed by the BTM (Bureau Taxi
Montréal) upon demand and validation.

1.5 APIs implementation
This documentation provides an overview of the TXP REST APIs. REST APIs provide access to
resources (data entities) via URL paths. To use a REST API, your application will make an HTTPS
request and parse the response. Your methods will be the standard HTTP methods like GET, PUT
and POST. REST APIs operate over HTTPS making it easy to use with any programming language
or framework. The input and output formats for the TXP REST APIs are JSON.

Note that data is isolated for each operator. No operator can see other operator’s data.

2. Contextual Data

2.1 Registering a Driver
The structure of the required driver object is described below. You should push this information on
a daily basis to keep to the data up to date.

Calls to this API are idempotent: you can update a driver simply by submitting the updated driver
object with the same post method. If the department or professional licence is different, a new
driver will be created; if the department and professional licence are unchanged, the driver will be
updated.

2

Name Value Description

Accept Application/json Media types which are acceptable for the response

X-VERSION 2 Version of the API

X-API-KEY token API Key

POST /api/drivers
Parameters
Body (JSON) ** Send only one item at a time
{
 "data": [
 {
 "birth_date": "1950-12-22",
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "Jon",
 "last_name": "Doe",
 "professional_licence": "L1531-171274-08"
 }
]
}

Response (JSON) status 200 / 201
{
 "data": [
 {
 "birth_date": "1950-12-22",
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "Jon",
 "last_name": "Doe",
 "professional_licence": "L1531-171274-08"
 }
]
}

3

Status on create Status on update Unique identifier(s)

201 200 departement and
professional_licence

4

Key Value Type Description

departement department object The departement object is constituted of the
identifier numero and the name (nom) of the local
authority.

When a new driver is created by an Operator, an
empty string or null can be passed instead of the
name nom: only the identifier numero is used by
the TXP.

For Quebec, Since the adoption of Bill 17, the
department should always be:
departement.nom: "Québec" and
departement.numero: 1000. When
departement.numero is 1000 (Québec), the driver
is identified by it’s SAAQ driver's license number.

Before Bill 17, drivers were part of the
departement 660(Montreal) and were identified by
their ‘pocket number’.

professional_licence string Professional license number of the driver.
It is often a string of digits but it might for some
departments contain letters or other characters
like dash or slashes.

Warning: this identifier is not unique at the
national level: two local authorities can each
assign the same number to different drivers.
Warning: the typo "licence" (French writing)
instead of "license" (English writing) is still in the
API (as of version 2).

The couple of this professional license number
(professional_licence) and the licensing local
authority (departement) is used as the driver
identifier when declaring a taxi as a
vehicle/driver/license triplet.

For Quebec, Since the adoption of Bill 17, the
SAAQ driver's license number is used as the
professional_licence.

Before Bill 17, drivers were part of the

2.2 Registering a Vehicle
The structure of the required vehicle object is described below. You should push this information on
a daily basis to keep to the data up to date.

Calls to this API are idempotent: you can update a vehicle simply by submitting the updated vehicle
object with the same post method. If the licence plate is different, a new vehicle will be created; if
the licence plate is unchanged, the vehicle will be updated.

5

departement 660(Montreal) and were identified by
their ‘pocket number’.

last_name string Last name of the driver.

first_name string First name of the driver.

birth_date string, RFC3339 Birth date of the driver in "YYYY-MM-DD" format.
For Quebec, the birth date is ignored for privacy
reasons.

Response on create Response on update Unique identifier(s)

201 200 licence_plate

https://tools.ietf.org/html/rfc3339

POST /api/vehicles
Parameters
Body (JSON) ** Send only one item at a time
{
 "data": [
 {
 "licence_plate": "FAB1234",
 "vehicle_identification_number": "1FTFW1R6XBFD08251",
 "air_con": true,
 "horodateur": "aa",
 "color": "gris",
 "date_dernier_ct": "2016-12-22",
 "date_validite_ct": "2016-12-22",
 "credit_card_accepted": true,
 "electronic_toll": true,
 "fresh_drink": true,
 "pet_accepted": true,
 "tablet": true,
 "dvd_player": true,
 "taximetre": "aa",
 "every_destination": true,
 "nfc_cc_accepted": true,
 "baby_seat": true,
 "special_need_vehicle": true,
 "amex_accepted": true,
 "gps": true,
 "engine": "GO",
 "cpam_conventionne": true,
 "relais": true,
 "bank_check_accepted": true,
 "luxury": true,
 "horse_power": 2.0,
 "model_year": 1995,
 "wifi": true,
 "type_": "sedan",
 "nb_seats": 0,
 "constructor": "audi",
 "bike_accepted": true,
 "model": "a4"
 }
]
}

6

Response (JSON) status 200 / 201
{
 "data": [
 {
 "licence_plate": "FAB1234",
 "vehicle_identification_number": "1FTFW1R6XBFD08251",
 "air_con": true,
 "amex_accepted": true,
 "baby_seat": true,
 "bank_check_accepted": true,
 "bike_accepted": true,
 "color": "gris",
 "constructor": "audi",
 "cpam_conventionne": true,
 "credit_card_accepted": true,
 "date_dernier_ct": "2016-12-22",
 "date_validite_ct": "2016-12-22",
 "dvd_player": true,
 "electronic_toll": true,
 "engine": "GO",
 "every_destination": true,
 "fresh_drink": true,
 "gps": true,
 "horodateur": "aa",
 "horse_power": 2,
 "id": 36,
 "luxury": true,
 "model": "a4",
 "model_year": 1995,
 "nb_seats": 0,
 "nfc_cc_accepted": true,
 "pet_accepted": true,
 "private": false,
 (obsolete)"relais": true,
 "special_need_vehicle": true,
 "tablet": true,
 "taximetre": "aa",
 "type_": "sedan",
 "wifi": true
 }
]
}

7

8

Key Value Type Description

licence_plate String Mandatory - License plate of the vehicle.
Warning: the typo "licence" (French writing) instead of
"license" (English writing) is still in the API (as of
version 2).
The licence_plate is used as the vehicle identifier to
declare a taxi as a vehicle/driver/license triplet.
For historical reasons, values of licence_plate are case
sensitive. Even though, in reality, license plates should
not have lower case letters.

vehicle_identification_number String Optional - The licence_plate is the only mandatory
identifier for vehicles in the taxi registry.

Even though it is an optional attribute, the vehicle
identification number must be transmitted when
available.

constructor String Constructor of the vehicle.

model String Model of the vehicle.

color String Color of the vehicle.

type_ String Type of the vehicle.
The possible values are sedan, station_wagon, normal
or mpv.
Warning: the name of this key is type_ with the final
underscore.
If your type is not listed use "type_": null.

nb_seats Integer Number of seating positions available for passengers in
the vehicle (not counting the seat of the driver).
As per European Regulation EU/678/2011 the
following requirements apply for the counting of the
seating positions:
(a) each individual seat shall be counted as one seating
position;
(b) in the case of a bench seat, any space having a
width of at least 400 mm measured at the seat cushion
level shall be counted as one seating position.
(c) however, a space as referred to in point (b) shall not
be counted as one seating position where:
(i) the bench seat includes features that prevent the
bottom of the manikin from sitting in a natural way - for
example: the presence of a fixed console box, an
unpadded area or an interior trim interrupting the
nominal seating surface;
(ii) the design of the floor pan located immediately in
front of a presumed seating position (for example the
presence of a tunnel) prevents the feet of the manikin
from being positioned in a natural way.
When available, the area intended for an occupied
wheelchair shall be regarded as one seating position.

air_con Boolean This vehicle is equipped with air conditioning.

amex_accepted Boolean This vehicle accepts American Express card for any
amount (no minimum).

baby_seat Boolean This vehicle is equipped with a baby seat.

https://fr.wikipedia.org/wiki/Vehicle_Identification_Number
https://fr.wikipedia.org/wiki/Vehicle_Identification_Number
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32011R0678

9

bank_check_accepted Boolean This vehicle accepts national bank checks (foreign bank
checks might still be refused).

bike_accepted Boolean This vehicle can transport a bicycle.

credit_card_accepted Boolean This vehicle accepts credit card payments for any
amount (no minimum).
This should be true for vehicles accepting at least Visa
and MasterCard. There is a different Boolean
amex_accepted for American Express.

dvd_player Boolean This vehicle has a DVD player at the disposal of clients
during the ride.

electronic_toll Boolean This vehicle is equipped with an electronic device
letting them use express toll booths on toll roads.

every_destination Boolean As per the French regulation, taxis can refuse service to
clients whose destination is not within their zone. Some
taxis do accept any destination outside of their zone.
The every_destination boolean should be false by
default, and true for taxis who renounce their right to
refuse service to clients depending on their destination.

fresh_drink Boolean This taxi offers refreshments.

gps Boolean This vehicle is equipped with GPS navigation.

luxury Boolean This is a luxury vehicle.

nfc_cc_accepted Boolean This vehicle accepts NFC credit card payments.

pet_accepted Boolean This vehicle can accommodate pets (understood as
cats or small dogs; other large or unusual pets might
still be refused).

special_need_vehicle Boolean Wheelchair accessible vehicle as defined in
“EU/678/2011” (which amends 2007/46/EC).
Vehicles constructed or converted specifically so that
they accommodate one or more persons seated in their
wheelchairs when travelling on the road.

tablet Boolean This vehicle has a digital tablet at the disposal of the
clients during the ride.

wifi Boolean This vehicle has complimentary Wi-Fi aboard.

cpam_conventionne Boolean This vehicle has a convention with social security to
transport patients.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

date_dernier_ct string, RFC3339 Date of the latest compulsory roadworthiness tests in
"YYYY-MM-DD" format.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32011R0678
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007L0046
https://tools.ietf.org/html/rfc3339

2.3 Registering a Owner/license (ADS)
The structure of the required ads object is described below. You should push this information on a
daily basis to keep to the data up to date.

Calls to this API are idempotent: you can update a owner (ADS) simply by submitting the updated
ads object with the post method. If the insee or numero is different, a new owner (ADS) will be
created; if the insee and numero are unchanged, the owner (ADS) will be updated.

10

date_validite_ct String, RFC3339 Expiration date of the latest compulsory roadworthiness
tests in "YYYY-MM-DD" format.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

engine String Engine type of the vehicle.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

horse_power Integer Fiscal power of the vehicle.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

model_year Integer Model year of the vehicle.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

relais Boolean True if this vehicle is a temporary replacement vehicle
for a fully licensed one.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

taximetre String Brand and model of the taximeter.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

horodateur String Brand and model of the time clock.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.

id Integer This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field
can be omitted or passed with a null value.
There is no need for Operators or Search Engines to
store the value returned by the TXP: the field used to
uniquely identify vehicles in all transactions with the
TXP is the licence_plate.

https://tools.ietf.org/html/rfc3339

Owner (ADS) vs license (ADS)
Following adoption of Bill 17, the meaning of ADS has changed from license to owner.

The owner of a vehicle used as a taxi requires a license for each vehicule he owns. Before Bill 17,
the taxi registry was keeping track of each individual license. Since the adoption of Bill 17, the taxi
registry does not keep track of each individual license anymore. The taxi registration does now only
keep track of the owner and the vehicles he owns. An owner may own many vehicules.

The ADS with the meaning of owner can be distinguished from the ADS with the meaning of license
by the value of the taxi zone (insee). If the taxi zone is 1000 (Québec), it means owner, otherwise it
means license.

POST /api/ads
Parameters ** Send only one item at a time
Body (JSON)
{
 "data": [
 {
 "category": "",
 "vehicle_id": 36,
 "insee": "1000",
 "numero": "161555777",
 "owner_name": "Co-op",
 "owner_type": "company",
 "doublage": false,
 "vdm_vignette": "string"
 }
]
}

11

Zone ADS.insee ADS.numero Name ADS.vdm_vignette

Before Bill 17

Montréal Est 102005 4M000000011A John Doe 8811

Montréal Est 102005 4M000000022B John Doe 8822

After Bill 17

Québec 1000 161555777 John Doe Unused

Response on create Response on update Unique identifier(s)

201 200 insee and numero

 Response (JSON) status 200 / 201
{
 "data": [
 {
 "category": "",
 "doublage": false,
 "insee": "1000",
 "numero": "161555777",
 "owner_name": "Co-op",
 "owner_type": "company",
 "vehicle_id": 36,
 "vdm_vignette": "string"
 }
]
}

12

Key Value Type Description

insee string Bill 17 abolishes the existing taxi zones,
Montreal West (A12), Montreal downtown
(A11) and Montreal East (A5), with the
exception of the YUL airport zone which is
under federal jurisdiction.

Since the adoption of Bill 17, all taxis, in
Quebec province, belong to the
1000(Québec) taxi zone.

Before the adoption of Bill 17, ADS were
identified by their CTQ license number.
Three agglomerations exist for Montreal as
follow:
102005 : A5 – Eastern part of the island of
Montreal
102011 : A11 – Downtown/center Montreal
102012 : A12- West part of the island of
Montreal

13

numero string After Bill 17, numero represents: The SAAQ
file number identifying a company or an
individual that owns a vehicle. The SAAQ file
number format varies depending on the
owner being a company or an individual.
Ex: company = 161902393
Ex: individual = L1531-171274-08
For individuals, the SAAQ file number is the
same as the driver license number.

See section Owner (ADS) vs license (ADS)
above for more details.

The couple ADS.insee and ADS.numero is
used when declaring a taxi as a
driver/vehicle/license triplet.

Before the adoption of Bill 17, ADS were
identified by their CTQ license number (12
alphanumeric characters).

owner_name string Name of the holder of the license.
Warning: It might be either an individual or a
company.

owner_type string The two possible values are company or
individual.

category string This field is used for administrative purposes.
When a new license (aka ADS) is created by
an Operator, an empty string has to be
passed (not a null value).

doublage boolean Some regulation specific to the Paris area
limits the working hours of the driver to 10
hours a day. Some licenses (ADS) can be
used for 2 shifts a day (by two different
drivers) and this field should then be set to
true. Others can only be operated 10 hours a
day and this field should be set to false.
When a new license (aka ADS) is created by
an Operator, this field should always be set to
false if the local authority in the insee field is
not 75056 (i.e. Paris).

vehicle_id integer obsolete

2.4 Declaring a Taxi
Status attribute is OBSOLETE and will be ignored.

The structure of the required taxi object is a minimalist version containing only the identifiers of the
vehicle, driver and ads and the initial status of the taxi. The vehicle, driver and ads used to
compose a taxi need to have been registered first through their respective API.

As per drivers, ads, vehicles etc, information can be updated daily, but this request should be used
on new taxi creation or when private attribute changes.

If successful, the API returns the complete taxi object as described including the characteristics of
the vehicle and most importantly the unique identifier id of the taxi that will be used for subsequent
communications.

Calls to this API are idempotent: if you resubmit the same triplet of vehicle, driver and ads, the taxi
returned will have the same id.

Private parameters can be updated via this POST request.

Warning: Please make sure to save the returned Id, it will be required to update the taxi later on.

14

vdm_vignette string This field represents the "Vignette" number
given by the BTM (Bureau Taxi Montreal).
Mandatory.
This is ignored when insee (see above) is
Québec-1000 zone.

Response on
create

Response on
update

Unique identifier(s)

201 200 licence_plate (vehicle) and
departement and professional_licence (driver) and
insee and numero (ads)

POST /api/taxis
Parameters
Body (JSON) ** Send only one item at a time
{
 "data": [
 {
 "private": true,
 "vehicle": {
 "licence_plate": "FAB1234"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1531-171274-08"
 },
 "ads": {
 "insee": "1000",
 "numero": "161555777"
 }
 }
]
}

15

Response (JSON) status 200 / 201
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161555777"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1531-171274-08"
 },
 "id": "ueXs7TR",
 "last_update": null,
 "operator": null,
 "position": {
 "lat": null,
 "lon": null
 },
 "private": true,
 "rating": 4.5,
 "vehicle": {
 "licence_plate": "FAB1234",
 "characteristics": null,
 "color": null,
 "constructor": null,
 "model": "a4",
 "nb_seats": null
 }
 }
]
}

16

17

Key Value Type Description

vehicle vehicle A partial vehicle object with only the fields:
characteristics, color, constructor,
licence_plate, model, nb_seats.
Warning: some of those fields might not be
returned (or be returned with a null value) if
they were not provided by the taxi operator.

ads ADS A partial ADS object with only the fields:
insee, numero.

When ADS.insee is Québec-1000 then:
- driver.departement must be 1000
(Québec).
- vehicle.licence_plate cannot be a ‘T’
license plate.

For more detail, see section 5.3.4.

driver driver A partial driver object with only the fields:
departement, professionnal_licence.

id string A long-lived 7 characters long identifier
generated for this vehicle/ads/driver triplet by
the TXP.
This field should be omitted by operators
when declaring a new taxi through a POST
request; the newly generated id will be
returned in the taxi object sent back as the
response.

operator string Login of the certified operator.

private boolean As per VDM and BTM's requirements, as an
option, you can set the taxi's private field to
true or false. By default, the taxi's private
field is set to false. A private taxi will never
receive hails from the TXP.

rating float The mean of the ratings of last rides of the
taxi.
It is calculated by the TXP and falls between
0 and 5.

status status Status of the taxi.
The possible values are described in the
section 4.1 Hail Status.

3. Taxi Positions and Status

3.1 Updating the location and status of a taxi
You should push this information in batches every 5 seconds to keep the data up to date.

The JSON payload should be as follows.

POST /api/taxi-position-snapshots
Parameters
Body (JSON) **items should contain all your taxis
{
 "items": [
 {
 "timestamp": "1430076493",
 "operator": "coop",
 "taxi": "tPc79rW",
 "lat": "45.38852053",
 "lon": "-73.84394873",
 "device": "phone",
 "status": "free",
 "version": "2",
 "speed": "50",
 "azimuth": "180"
 }
]
}

18

position {lat, lon} The latitude and longitude of the taxi.
Warning: those values are only returned by
the TXP in the response to a GET request on
the /taxis/ API looking for taxis around a
client. They will be nulled when returned in
the response to a GET request on the
/taxis/{taxi_id}/ API looking for information on
a specific taxi.

last_update integer Timestamp of the last geolocation update of
the taxi. The format is the usual Unix time
(IEEE P1003.1 POSIX) and as such is UTC
(no timezone).

https://en.wikipedia.org/wiki/Unix_time

19

Key Value Type Description Mandatory

timestamp string Exact time at which the location was
determined by the taxi, formatted as a Unix
time (IEEE 1003.1-2008 POSIX).

Warning: as per the POSIX specification,
this should be UTC time without any
timezone information.

Warning: Do not send locations in the future
(or older than 1 minute) as they will return a
http 400 error. Timestamp most by in
second.

Yes

operator string Login of the certified operator. Yes

taxi string The id of the taxi is the id that was sent back
when the taxi was declared (see Declaring a
taxi).

Yes

lat string Latitude of the taxi.

This should be in JavaScript double precision
floating-point format, with decimal separator ".".

You can truncate the values to 6 decimal
places if you want to keep the payload as short
as possible (6 decimal places is worth up to 10
cm).

Yes

lon string Longitude of the taxi.

This should be in JavaScript double precision
floating-point format, with decimal separator ".".

You can truncate the values to 6 decimal
places if you want to keep the payload as short
as possible (6 decimal places is worth up to 10
cm).

Yes

device string phone, tablet, taximeter or otherdevice. Yes

http://standards.ieee.org/findstds/standard/1003.1-2008.html

3.2 Taxis Status

3.3 Updating the status of a taxi
This section is OBSOLETE. Please notice the following:

1. It is now recommended to use POST /api/taxis (section 2.4) to modify private attribute.

2. Even if it is discouraged to use PUT /api/taxis/{taxi_id}, it is still a valid request.

20

status string Possible values: answering, free, occupied, off,
oncoming or unavailable.

Mandatory.

For more details, see the table below.

Yes

version string "2" for now (geolocation version 2 of the API). Yes

speed string The actual speed of the taxi (in km/h). Yes

azimuth string The current orientation of the taxi (360°). Yes

Value Description Mandatory

answering The taxi is currently answering to a hail. No, use unavailable if the
information is not available.

free The taxi can be hailed. yes

occupied The taxi has a customer on board. yes

off The taxi is not logged in or did not update its location
recently enough.

yes

oncoming The taxi is on its way to meet a customer. No, use unavailable if the
information is not available.

unavailable The taxi is logged in, but cannot be hailed. yes

3. Only status change submitted thru POST /api/taxi-position-snapshots (section 3.1) will be
considered. Sending status value thru PUT /api/taxis/{taxi_id}, is still possible but status
value it will be ignored.

The status of the taxi should be sent to the TXP whenever there is a change of status from the
operator. The possible status is free or occupied or off or answering or oncoming. This is done
through a “HTTPS PUT request to the /taxis/{taxi_id}/ API”.

You can only update the following attributes: status and private. For more details, see the attribute
description in section 2.4 “Declaring a taxi”.

PUT /api/taxis/{taxi_id}
Parameters
Taxi_id (string)
Body (JSON) ** Send only one item at a time
{
 "data": [
 {
 "status": "free",
 (mandatrory)"private": "false" (string or boolean)
 }
]
}
Response
Return the taxi's details in JSON (see below 3.4 Querying a taxi)

3.4 Querying a taxi
In order to check that the updating of the status or location of the taxi worked properly, you can use
a “HTTPS GET request to the /taxis/{taxi_id}/ API”.

Warning: the GET /taxis/{taxi_id}/ API will return the status and the last_update (in UNIX TIME
STAMP) but the “lat” and“lon”will be nulled (for privacy reasons).

Warning: in production, you should almost never need the GET /taxis/{taxi_id}/ API. The endpoint is
provided only to improve the developer experience by allowing them to know the status, ads, driver
and vehicle of a taxi.

21

GET /api/taxis/{taxi_id}
Parameters
Path
taxi_id (string)(required)
Response (JSON) status 200
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161555777"
 },
 "crowfly_distance": null,
 "driver": {
 "departement": "1000",
 "professional_licence": "L1531-171274-08"
 },
 "id": "VsLwptA",
 "last_update": 1502819736,
 "operator": "coop",
 "position": {
 "lat": null,
 "lon": null
 },
 "private": false,
 "rating": 4.42332039594968,
 "status": "answering",
 "vehicle": {
 "licence_plate": "FAB1234",
 "characteristics": [
 "every_destination",
 "gps",
 "pet_accepted",
 "bike_accepted",
 "credit_card_accepted",
 "luxury"
],
 "color": "GRISE",
 "constructor": "TOYOTA",
 "model": "SIENNA",
 "nb_seats": 6
 }
 }
]
}

22

4. Hails

4.1 Hail Status

The states in gray can be reached after an interaction with the operator and are described in section
4.3 “Operator”. The ones in blue can be reached after an interaction with the search engine and are
described in the section 4.2 “Faking a Search Engine”. The states in white are under the control of
the TXP.

The section 5.2 Hail Tests describes the scenario that the operator must support in order to receive
hail from the TXP.

23

Status description

24

Value Description Interaction

emitted The initial status of hail
when created by a search
engine

This is the status that should be used in the
payload of the POST request on the /hails/ API
when a search engine creates a new hail.

received The hail is received from the
search engine by the TXP

Before forwarding the hail to the operator, the
TXP changes the status to received and sends
back the complete hail (with the newly
generated id) to the search engine. Time before
failure 15 seconds.

sent_to_operator The hail has been sent from
the TXP to the operator

The TXP changes the status to sent_to_operator
after forwarding the hail to the operator
endpoint. Time before failure 10 seconds.

received_by_operator The operator has
acknowledged receiving the
hail from the TXP

The TXP changes the status to
received_by_operator after receiving a HTTP 200
response from the “operator” endpoint. Time
before failure 10 seconds.

received_by_taxi The hail has been received
by the taxi

The “operator” should set the status of the hail
to received_by_taxi by doing a “ PUT” request on
the /hails/{hail_id} API when the hail has been
presented to the taxi driver. Time before
timeout_taxi 30 seconds.

accepted_by_taxi The hail has been accepted
by the taxi driver

The “operator” should set the status of the hail
to “accepted_by_taxi” by doing a “ PUT” request
on the /hails/{hail_id} API when the hail has
been accepted by the taxi driver. Time before
timeout_customer 10 minutes.

declined_by_taxi The hail has been declined
by the taxi driver

The “operator” should set the status of the hail
to “declined_by_taxi” by doing a “PUT” request on
the /hails/{hail_id} API when the hail has been
rejected by the taxi driver.

timeout_taxi The taxi driver did not
accept nor reject the hail
after 30s

The TXP changes the status to timeout_taxi
automatically after 30s have passed since the
status was set to received_by_taxi.

25

accepted_by_customer The hail has been confirmed
by the client

The “search engine” should set the status of
the hail to “accepted_by_customer” by doing a
“PUT” request on the /hails/{hail_id} API when
the hail has been confirmed by the search
engine.
Time before failure 1 hour.

Warning: this confirmation can only happen
“after” the status has been set to
“accepted_by_taxi” by the “ operator” .

declined_by_customer The hail has been canceled
by the client

The “search engine” should set the status of
the hail to “declined_by_customer” by doing a
“PUT” request on the /hails/{hail_id} API when
the hail has been canceled by the client.
Warning: this cancellation can happen at any
moment (including before the taxi driver
accepts the hail).

timeout_customer The client did not confirm
nor cancel the hail after 10
minutes

The “TXP” changes the status to
“timeout_customer” automatically after 10
minutes have passed since the status was set
to accepted_by_taxi.

incident_customer An event of force majeure
prevents the client to wait
for the taxi

The “search engine” should set the status of
the hail to “incident_customer” by doing a “ PUT”
request on the /hails/{hail_id} API when the
client cancels the hail after having reconfirmed
it.

incident_taxi An event of force majeure
prevents the taxi to serve
the client

The operator should set the status of the hail
to “incident_taxi” by doing a “PUT” request on the
/hails/{hail_id} API when the taxi cancels the
hail after having accepted it.

failure A technical problem
happened.

The “TXP” changes the status to “failure” when:
● The operator endpoint is unreachable;
● or when receiving a HTTP 4xx or 5xx
response from the operator endpoint;
● or if the operator endpoint does not
return a hail JSON object containing a valid
taxi_phone_number;
● or if the operator does not set the
status of the hail to received_by_taxi in the 10s
after the status has been set to
received_by_operator.

customer_on_board The customer is on board. The “operator” should set the status of the hail
to customer_on_board by doing a “PUT” request
on the /hails/{hail_id} API when the hail has
been accepted by the taxi driver.

Status changes based on timeout

4.2 Receiving a Hail
In order to receive hails, “operators” need to implement an endpoint on their servers. The endpoint
has to be able to receive HTTPS “POST” requests from the TXP. This is the only endpoint that
needs to be implemented on the “operator” side.

The certificate used by the operator for HTTPS requests must be recent and trusted by a
well-known certification authority. Moreover, the endpoint must use an API key transmitted via an
HTTP header in order to authenticate the client.

Accredited “operators” can configure the URL of the endpoint on the operator side, the API key
HTTP header and the API key value on their profile page of the TXP website.

“hail” JSON object which will be transmitted as the payload of the HTTPS POST request has the
same structure as the response described in section 4.2.1 Hailling a taxi_Hail_Structure.

The endpoint should return one of the valid HTTP status code in the “2xx Success” range in case of
success, and in the “4xx Client Error or 5xx Server Error in case of error. If the status code is in the
“2xx Success” range, the response payload can be a JSON hail object, in which case the hail will be

26

finished The hail is finished The “operator” should set the status of the hail
to finished by doing a “PUT” request on the
/hails/{hail_id} API when the hail has been
accepted by the taxi driver.

Status before timeout Status after timeout Timeout delay (seconds)

accepted_by_customer failure 3 600

accepted_by_taxi timeout_customer 600

customer_on_board failure 86 400

emitted failure 10

received failure 15

received_by_operator failure 10

received_by_taxi timeout_taxi 30

sent_to_operator failure 10

updated on the TXP. This response payload can for instance be used to transmit the
“taxi_phone_number” to the TXP.

4.3 Querying the Status of a Hail
In order to keep track of the status of the hail, you can do a “HTTPS GET request to
the/hails/{hail_id}/API0”. The JSON object has the same structure as the response described in
section 4.2.1 Hailling a taxi._Hail_Status.

The operator needs to fetch the status of the hail to check if the status changed. The polling delay
for this check should be equal or superior to 120 seconds the moment the hail is received until it
reaches the “customer_on_board” status.

GET /api/hails/{hail_id}
Parameters
Path
Hail_id (string)(required)

4.4 Updating a Hail
As the hail transaction progresses, the operator must update the hail status. This is done through a
call of the “HTTPS PUT request to the hails API.

See section 5.2 Hail Tests, for more details on when and why the operator must update the hail
status.

You do have to check the response of the PUT request to ensure that the update went as expected.
For example, if the PUT request was not received in a timely fashion, the hail status may be
“timeout_taxi” instead of the expected status. If the transaction reaches an unexpected end state
(ex: timeout_taxi, failure, etc.), the whole hail transaction will be considered cancelled and a new
hail transaction must be restarted.

27

PUT /api/hails/{hail_id}
Parameters
Path
Haild_id (string)(required)
Body (JSON) **all value inside the JSON are OPTIONAL, use as needed
** Send only one item at a time
{
 "data": [
 {
 "status": "emitted",
 "incident_taxi_reason": "no_show",
 "reporting_customer": true,
 "reporting_customer_reason": "ko"
 }
]
}

5. Tests
This section illustrates tests that operator’s IT staff can perform to verify proper Taxi Exchange Point
(TXP) integration and to ensure that changes, required by Bill 17, are properly implemented.

Steps grouping
Tests steps are grouped, when appropriate, in two sections:

● Initial State.
○ Indicates the situation before tests start. This situation may already exist or can be

created in the acceptance environnement by following proposed steps.
○ On test step’s table this section starts with the title: Initial State
○ On pictograms this section is delimited by dashed lines.

● Test.
○ Indicates steps to follow in order to conform to Bill 17.
○ On test step’s table this section starts with the title: Test

Pictograms
Pictograms are used to facilitate comprehension by clearly differentiating entities. (Different
vehicles, drivers, taxis etc.) Also, at the end of test procedures, they help illustrate, not only the
entities created by the test procedure, but also the link between different entities.

● A particular color or an uppercase letter/number combination identifies a single entity.
● Different entities of the same color are not necessarily linked, though they generally are.
● Arrows formally bind different entities.

Icons contain a textual reference, consisting of an uppercase letter: D for driver, V for vehicle, P for
permit and T for taxi followed by and an index number: Uniquely identifying the entity.

28

5.1 Contextual Data Tests

5.1.1 The license plate of a vehicle changes

Unlike the driver's license number and the SAAQ file number which are immutable, the license plate
can change over time. An owner can change, at will, his vehicle’s license plate.

29

Icon Entity (generic) Identification

Driver Drive number 1

Vehicle Vehicle number 1

Permit (ADS) Permit number 1

Taxi Taxi number 1

Step Action Request Response Icon

Initial State

1 Create a driver.

POST /api/drivers
{
 "data": [
 {
 "professional_licence": "L1006-221166-01",
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 ...
 }
]
}

HTTP 201 Created

30

2 Create a vehicle.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FAA0011",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

3 Create a permit/ADS.

POST /api/ads
{
 "data": [
 {
 "insee": "1000",
 "numero": "161000011",
 ...
 }
]
}

HTTP 200 OK

4 Create a taxi using the driver D1,
vehicle V1 and permit/ADS P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000011"
 },
 "vehicle": {
 "licence_plate": "FAA0011"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-01"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T1”,
 ...
 }
]
}

Test

5 Create a vehicle identical to V1 but
with a different licence plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FBB0022",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

Entities present in the system after the license plate renewal

31

6 Create a taxi for vehicle with the
new license plate

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000011"
 },
 "vehicle": {
 "licence_plate": "FBB0022"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-01"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T2”,
 ...
 }
]
}

7 Start sending taxi positions and
status with the taxi created (T2).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T2",
 ...
 }
]
}

HTTP 200 OK

5.2 Hail Tests

5.2.1 Overview

For testing purposes, the operators will be allowed to emulate a search engine in the accept
environment. Your API key will allow you to create and update hails for your taxis only. This will not
be allowed in the production environment.

5.2.1.1 Scenarios

All the scenarios that the operator must support in order to receive hails from the Taxi Exchange
Point (TXP) are described in sections 5.2.3 to 5.2.8. Make sure you test them thoroughly.

5.2.1.2 Unexpected Exceptions

A state transition to failure state may occur from any state. Moreover, technical problems may
cause the TXP to be unreachable or to respond with a HTTP 500 status code (server error). These
are edge cases that should not occur frequently, but the operator must be ready to deal with these
situations. If an unexpected error occurs, the operator should assume that the state of the hail is
failure and should stop interacting with the TXP for this hail.

The operator must notify the driver that a technical problem occurred and that the hail is canceled if
the technical problem occurred before reaching the following states: received_by_taxi,
accepted_by_taxi, declined_by_taxi. However, there is no need to notify the driver if the technical
problem occurs before reaching the following states: incident_taxi, customer_on_board, finished

5.2.2 Faking a Search Engine

5.2.2.1 Hailing a taxi
Hailing a taxi is done through an HTTPS POST request to the fake hail API. The structure of the
required “hail” object is described below.

In order to receive a hail, the state of the taxi must be free. For more details, see section 3.3
Updating the status of a taxi.

In order to receive a hail, the location of the taxi must have been updated recently. For more
details, see section 3.1 Updating the location and status of a taxi.

32

POST/api/motor/hails/
Parameters
Body (JSON) ** Send only one item at a time
{
 "data": [
 {
 "customer_lat": 45.58017,
 "customer_lon": -73.61479,
 "customer_address": "801 rue Brennan, Montreal QC H3C 0G4",
 "taxi_id": "tPc79rW",
 "customer_phone_number": "514 999-9999",
 "operateur": "operPlus",
 "customer_id": "anonymous"
 }
]
}

33

Response (JSON) Status 200 OK
{
 "data": [
 {
 "creation_datetime": "Thu, 22 Dec 2016 11:24:53 -0000",
 "customer_address": "801 rue Brennan, Montreal QC H3C 0G4",
 "customer_id": "anonymous",
 "customer_lat": 45.58017,
 "customer_lon": -73.61479,
 "customer_phone_number": "514 999-9999",
 "id": "hvuJ45S",
 "incident_customer_reason": null,
 "incident_taxi_reason": null,
 "last_status_change": "Thu, 22 Dec 2016 11:24:53 -0000",
 "operateur": "coop",
 "rating_ride": null,
 "rating_ride_reason": null,
 "reporting_customer": null,
 "reporting_customer_reason": null,
 "status": "received",
 "taxi": {
 "id": "tPc79rW",
 "last_update": 1482423893,
 "position": {
 "lat": 45.6164341134,
 "lon": -73.6138161294
 }
 },
 "taxi_phone_number": null
 }
]
}

34

35

Key Value Type Description

customer_lat float Latitude of the position of the client.

This should be in JavaScript double precision
floating-point format, with decimal separator "."

customer_lon float Longitude of the position of the client.

This should be in JavaScript double precision
floating-point format, with decimal separator "."

customer_address string Address of the position of the client.

This address will be used by the taxi driver to find the
client.

It should be displayed and validated by the client.

Warning: In some cases, a POI might be more
meaningful than a postal address.

customer_id string Identifier of the customer.

The only acceptable value is “anonymous” (case
sensitive)

customer_phone_number string Phone number of the client.

This phone number might be used by the Operator of
the taxi in case it proves difficult to find the client.

taxi_id string Identifier of the taxi the client is hailing.

This identifier was returned by the TXP in the Taxi
object.

Warning: for historical reasons, when a “search
engine” sends a new hail to the TXP, the taxi id
should be passed as a “taxi_id” field directly in the “ail”
object.

In all subsequent exchanges, including when the
“TXP” forwards the “hail” to the “operator”, the taxi id
appears instead as a “id” field in an embedded “taxi”
JSON object inside the hail.

operateur string Identifier of the Operator of the taxi the client is
hailing.

This identifier was returned by the “TXP” in the “Taxi”
object.

36

status status Status of the hail.

All possible values are described here

id string Identifier of the hail.

This identifier should be null or omitted when a
“search engine” sends a new hail to the TXP. The
newly generated “id” will be in the ”hail” object
returned by the TXP as a response.

taxi taxi Details of the taxi selected for the hail.

taxi_phone_number string Phone number the client should call in case of
problem.

This phone number can be either the number of the
call center of the operator or the mobile phone
number of the taxi driver. It has to be reachable at
the time of the ride: call center numbers should only
be transmitted during opening times.

incident_customer_reason string Reason of the incident that prompted the client to
cancel the ride.

This is reserved for future use. The only accepted
value as per version 2 of the API is an empty string.
This field should be used by “search engines” when
setting the status of the ride to incident_customer.

incident_taxi_reason string Reason of the incident that prompted the taxi to
cancel the ride.

This field should be used by “operators” when setting
the status of the ride to incident_taxi.

The possible reasons are: “no_show” (when the client
cannot be found), “address” (when the address cannot
be found), “traffic” (when a traffic jam prevents the taxi
to arrive at the location in a reasonable time) and
“breakdown” (in case of a mechanical problem on the
vehicle preventing the taxi to continue operating).
This information will be visible to the search engine
querying the hail.

rating_ride Integer (from 1 to
5)

Rating of the ride by the client.

This field should be used by “search engines” during
or after the ride to let customers rate the ride between
1 and 5 stars. A ride can be rated multiple times, but
only the latest rating will be considered.

5.2.2.1 Updating a Hail
As the hail transaction progresses, the search engine must update the hail status. This is done
through a call of the HTTPS PUT request to the “hails” API.

See section 5.2 Hail Tests for more details on when and why the search engine must update the
hail status.

37

rating_ride_reason string Explanation of the rating of the ride by the client.

This field should be used by “search engines” during
or after the ride to let the client explain low ratings of
the ride. It is recommended to ask customers for their
“rating_ride_reason” when their rating_ride is 3 stars or
less. This information will not be individually
transmitted to the taxi driver.

The possible values are “ko” (the taxi never showed
and/or the ride did not happen), payment (credit card
refused, etc), courtesy, (general attitude problems,
loud radio, etc), route (subpar itinerary, etc) and
cleanliness (dirty car, cigarette smell, etc).

reporting_customer boolean Reporting of a problem encountered with a customer
by a driver.

This field should be used by “operators” during or
after the ride to let the taxi driver inform the search
engine that a problem happened with the client. In
that case, the hail should be updated with a
reporting_customer set to True and a
reporting_customer_reason should be provided.

reporting_customer_reason string Explanation of the problem encountered with a
customer by a driver.

This field should be used by “operators” during or
after the ride to let taxi drivers explain the type of
problem they encountered with a client. It is only
required if “reporting_customer” is set to True.

The possible values are “ko” (the client was nowhere
to be seen and/or the ride did not happen), “payment”
(unpaid ride, bargaining, etc), courtesy (general
attitude problems, etc), route (non existing destination
address, etc) and cleanliness (dirty luggages,
cigarettes, etc).

You do have to check the response of the PUT request to ensure that the update went as expected.
For example, if the PUT request was not received in a timely fashion, the hail status may be
“timeout_customer” instead of the expected status. If the transaction reaches an unexpected end
state (ex: timeout_customer, failure, etc.), the whole hail transaction will be considered cancelled
and a new hail transaction must be restarted.

PUT /api/motor/hails/{hail_id}
Parameters
Path
Haild_id (string)(required)
Body (JSON) ** Send only one item at a time
{
 "data": [
 {
 "status": "accepted_by_customer"
 }
]
}

38

5.2.3 Happy Path

5.2.3.1 Graphical representation

39

5.2.3.2 Details
The client hails a taxi through the search engine.

POST /api/motor/hails/ ** Send only one item at a time
{
 "data": [
 {
 "customer_lat": 45.495,
 "customer_lon": -73.554,
 "customer_address": "70 Jarry",
 "taxi_id": "{taxiId}",
 "customer_phone_number": "514 201-4454",
 "operateur": "coop",
 "customer_id": "anonymous"
 }
]
}

The operator receives a hail request from the TXP.
Within 10 seconds, the operator notifies the TXP that they asked if the driver wanted to accept the
hail.
PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"received_by_taxi"}]}

When the driver accepts the hail within 30 seconds, the operator notifies the TXP.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"accepted_by_taxi "}]}

When the client accepts the hail within 20 seconds, the search engine notifies the TXP.

PUT /api/motor/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"accepted_by_customer"}]}

When the operator receives the information that the client is on board, the operator notifies the TXP.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"customer_on_board"}]}

When the client leaves the taxi, the operator notifies the TXP.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"finished"}]}

40

5.2.4 Declined by taxi

5.2.4.1 Graphical representation

5.2.4.2 Details
The client hails a taxi through the search engine.

POST /api/motor/hails/ ** Send only one item at a time
{
 "data": [
 {
 "customer_lat": 45.495,
 "customer_lon": -73.554,
 "customer_address": "70 Jarry",
 "taxi_id": "{taxiId}",
 "customer_phone_number": "514 201-4454",
 "operateur": "coop",
 "customer_id": "anonymous"
 }
]
}

The operator receives a hail request from the TXP.

Within 10 seconds, the operator notifies the TXP that they asked if the driver wanted to accept the
hail.

41

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"received_by_taxi"}]}

When the driver declines the hail within 30 seconds, the operator notifies the TXP.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"declined_by_taxi"}]}

5.2.5 Accepted by taxi after timeout

5.2.5.1 Graphical representation

42

5.2.5.2 Details
The client hails a taxi through the search engine.

POST /api/motor/hails/ ** Send only one item at a time
{
 "data": [
 {
 "customer_lat": 45.495,
 "customer_lon": -73.554,
 "customer_address": "70 Jarry",
 "taxi_id": "{taxiId}",
 "customer_phone_number": "514 201-4454",
 "operateur": "coop",
 "customer_id": "anonymous"
 }
]
}

The operator receives a hail request from the TXP.

Within 10 seconds, the operator notifies the TXP that they asked if the driver wanted to accept the
hail.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"received_by_taxi"}]}

When the driver accepts the hail after 30 seconds, the operator notifies the TXP.

PUT /api/hails/{hailId} ** Send only one item at a time

{"data":[{"status":"accepted_by_taxi"}]}

The operator notifies the driver that he/she had not answered in a timely fashion and that the hail
has been canceled. As explained in section 4.2.2 “Updating a Hail” from the Integration
documentation, the operator must always check the value of the status attribute in the response to
ensure that the state transition completed as expected.

43

5.2.6 Canceled by taxi

5.2.6.1 Graphical representation

44

5.2.6.2 Details
The client hails a taxi through the search engine.

POST /api/motor/hails/ ** Send only one item at a time
{
 "data": [
 {
 "customer_lat": 45.495,
 "customer_lon": -73.554,
 "customer_address": "70 Jarry",
 "taxi_id": "{taxiId}",
 "customer_phone_number": "514 201-4454",
 "operateur": "coop",
 "customer_id": "anonymous"
 }
]
}

The operator receives a hail request from the TXP.

Within 10 seconds, the operator notifies the TXP that they asked if the driver wanted to accept the
hail.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"received_by_taxi"}]}

When the driver accepts the hail within 30 seconds, the operator notifies the TXP.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"accepted_by_taxi"}]}

When the client accepts the hail within 20 seconds, the search engine notifies the TXP.

PUT /api/motor/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"accepted_by_customer"}]}

When an incident occurs that prompts the driver to cancel the hail before having the client on board,
the operator notifies the TXP and specifies the reason why the hail was cancel. See section 4.1
“Hail Status” from the Integration documentation for the list of possible reasons.

45

PUT /api/hails/{hailId} ** Send only one item at a time
{
 "data": [
 {
 "status": "incident_taxi",
 "incident_taxi_reason": "breakdown",

 }
]
}

5.2.7 Canceled by client

5.2.7.1 Graphical representation

46

5.2.7.2 Details
The client hails a taxi through the search engine.

POST /api/motor/hails/ ** Send only one item at a time
{
 "data": [
 {
 "customer_lat": 45.495,
 "customer_lon": -73.554,
 "customer_address": "70 Jarry",
 "taxi_id": "{taxiId}",
 "customer_phone_number": "514 201-4454",
 "operateur": "coop",
 "customer_id": "anonymous"
 }
]
}

The operator receives a hail request from the TXP.

Within 10 seconds, the operator notifies the TXP that they asked if the driver wanted to accept the
hail.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"received_by_taxi"}]}

When the driver accepts the hail within 30 seconds, the operator notifies the TXP.

PUT /api/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"accepted_by_taxi"}]}

Once the hail is in the state accepted_by_taxi, the operator must poll the TXP each 30 seconds in
order to ensure that the hail is not in the state incident_customer, declined_by_customer or
timeout_customer. The operator can stop polling once the hail reaches one of these states:
customer_on_board, incident_taxi, incident_customer, declined_by_customer or timeout_customer.

GET /api/hails/{hailId}

When the client accepts the hail within 20 seconds, the search engine notifies the TXP.

PUT /api/motor/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"accepted_by_customer"}]}

47

When an incident occurs that prompts the client to cancel the hail before being on board, the search
engine notifies the TXP.

PUT /api/motor/hails/{hailId} ** Send only one item at a time
{"data":[{"status":"incident_customer"}]}

When the operator gets the information that the hail was canceled by the client, the operator notifies
the driver.

GET /api/hails/{hailId}

5.2.8 Failure example

5.2.8.1 Graphical representation

5.2.8.2 Details
The client hails a taxi through the search engine.

48

POST /api/motor/hails/ ** Send only one item at a time
{
 "data": [
 {
 "customer_lat": 45.495,
 "customer_lon": -73.554,
 "customer_address": "70 Jarry",
 "taxi_id": "{taxiId}",
 "customer_phone_number": "514 201-4454",
 "operateur": "coop",
 "customer_id": "anonymous"
 }
]
}

The operator receives a hail request from the TXP.

After 10 seconds, the operator notifies the TXP that they asked if the driver wanted to accept the
hail.

PUT /api/hails/{hailId}
{"data":[{"status":"received_by_taxi"}]}

The operator notifies the driver that a technical problem occurred and that the hail is canceled. As
explained in section 4.2.2 “Updating a Hail” from the Integration documentation, the operator must
always check the value of the status attribute in the response to ensure that the state transition
completed as expected.

GET /api/hails/{hailId}

5.3 Bill 17 Tests
This section is intended for the operator’s IT staff responsible for implementing the changes,
required by Bill 17, in the operator's IT system. This section presents all the information and the
links required to implement these changes.

To understand how these changes impact the operator at the business level, see the document
Guide d’accompagnement loi 17.

For information on how to read the tests presented in this section, see Steps grouping and
Pictograms in section 5.

The operator's IT staff is responsible for verifying that the changes required by Bill 17 are
correctly implemented in the operator's IT system.

49

http://www.registretaximontreal.ca/operateur/

The operator’s IT staff is responsible for deciding when to deploy these changes to the
production environment.To ensure proper migration, tests can be performed, at will, in the
acceptance environment at: https://taximtl.accept.ville.montreal.qc.ca.

BTM’s staff remains available for answering any related questions at:
support.taxi.exchange.point@montreal.ca.

If needed, The operator’s IT staff can ask BTM’s staff to help make sure that changes, required by
Bill 17, are properly implemented in operators’ IT system by verifying tests results in the acceptance
environment.

When available, vehicle_identification_number must be transmitted

See section 2.2 for more information.

Obligation to continue transmitting vehicle’s positions
In accordance with the Act regulating the remunerated transport of persons by automobile, vehicles
must remain connected to the Taxi register of the Bureau du taxi de Montréal (BTM). During the
transition period (October 10, 2020 to March 31, 2021), positions of non-migrated vehicles must
continue to be transmitted as long as the position’s transmission of migrated vehicles is not active.

50

https://taximtl.accept.ville.montreal.qc.ca/
mailto:support.taxi.exchange.point@montreal.ca

5.3.1 Migrate a driver when the vehicles he drives have not been migrated yet

This migration can be performed as soon as possible. There are no prerequisites.

51

Step Action Request Response Icon

Initial State

1 Create a driver with Montréal-600
department.

POST /api/drivers
{
 "data": [
 {
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "00011",
 "departement": {
 "nom": "Montréal",
 "numero": "660"
 }
 }
]
}

HTTP 201 Created

2 Create a vehicle with a ‘T’ licence
plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00011A",
 ...
 }
]
}

HTTP 201 Created

3 Create a permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000011A",
 "vdm_vignette": "5511",
 ...
 }
]
}

HTTP 201 Created

52

4 Create the first taxi driven by D1
and link it to V1 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "660",
 "professional_licence": "00011"
 },
 …
 }
]
}

HTTP 201 Created

5 Create a second vehicle with ‘T’
licence plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00012B",
 ...
 }
]
}

HTTP 201 Created

6 Create a second permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000012B",
 "vdm_vignette": "5512",
 ...
 }
]
}

HTTP 200 OK

7 Create the second taxi driven by
D1 and link it to V2 and P2.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000012B"
 },
 "vehicle": {
 "licence_plate": "T00012B"
 },
 "driver": {
 "departement": "660",
 "professional_licence": "00011"
 },
 …
 }
]
}

HTTP 201 Created

53

Test

8

In accordance with Bill 17, create a
new driver using his driving license
number and Québec-1000
department.

For more details on how to submit
a driver in accordance with Bill 17,
see the description of department
and professional licence in section
2.1.

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "L0006-221166-01"
 }
]
}

HTTP 201 Created

9
Create a taxi using the driver in
accordance with Bill 17 (D3) and
the first vehicle that have not been
migrated yet (V2 with P2).

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L0006-221166-01"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T3”,
 ...
 }
]
}

10 Start sending taxi positions and
status with the taxi created (T3).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T3",
 ...
 }
]
}

HTTP 200 OK

Entities present in the system after the migration

54

11

A driver may drive many
vehicles. Make sure to create a
new taxi for each vehicle driven
by the driver.

Create a second taxi using the
driver in accordance with Bill 17
(D3) and the second vehicle that
have not been migrated yet (V2
with P2)

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000012B"
 },
 "vehicle": {
 "licence_plate": "T00012B"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L0006-221166-01"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T4”,
 ...
 }
]
}

12 Start sending taxi positions and
status with the taxi created (T4).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T4",
 ...
 }
]
}

HTTP 200 OK

5.3.2 Migrate a vehicle when the drivers who drive it have been migrated

This migration can be performed when an owner transmits the new license plate in conformity with
Bill 17 (No T license plate).

Before performing this migration, the migration 5.3.1 must have been performed for all the drivers
who drive the vehicle.

Note that an owner can change the license plate for reasons unrelated to Bill 17. See section 5.1.1
for more information.

55

Step Action Request Response Icon

Initial State

1

To emulate the results of the
migration described section 5.3.1,
create a new driver using his
driving license number and
Québec-1000 department.

For more details on how to submit
a driver in accordance with Bill 17,
see the description of department
and professional licence in section
2.1.

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "L1006-221166-11"
 }
]
}

HTTP 201 Created

2 Create a vehicle with a ‘T’ licence
plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00011A",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

3 Create a permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000011A",
 "vdm_vignette": "5511",
 "owner_name": "Taxi-Pro",
 ...
 }
]
}

HTTP 201 Created

56

4 Create the first taxi driven by D1
and link it to V1 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-11"
 },
 …
 }
]
}

HTTP 201 Created

5

To emulate the results of the
migration described section 5.3.1,
create a second driver using his
driving license number and
Québec-1000 department.

For more details on how to submit
a driver in accordance with Bill 17,
see the description of department
and professional licence in section
2.1

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "Jane",
 "last_name": "Din",
 "professional_licence": "L2006-221166-22"
 }
]
}

HTTP 201 Created

6 Create the second taxi driven by
D2 and link it to V1 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L2006-221166-22"
 },
 …
 }
]
}

HTTP 201 Created

Test

57

7

In accordance with Bill 17, create a
vehicle identical to V1 but with the
new licence plate.

For more details on how to submit
a vehicle in accordance with Bill
17, see the description of
licence_plate in section 2.2

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FAA0012",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

8

In accordance with Bill 17, create a
permit/ADS identical to P1 but with
zone Québec-1000 and SAAQ file
number.

For more details on how to submit
a permit/ADS in accordance with
Bill 17, see the description of insee
and numero in section 2.3

POST /api/ads
{
 "data": [
 {
 "insee": "1000",
 "numero": "161000012",
 "owner_name": "Taxi-Pro",
 ...
 }
]
}

HTTP 200 OK

9 Create a taxi using driver D1,
vehicle V2 and permit/ADS P2.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000012"
 },
 "vehicle": {
 "licence_plate": "FAA0012"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-11"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T3”,
 ...
 }
]
}

10 Start sending taxi positions and
status with the taxi created (T3).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T3",
 ...
 }
]
}

HTTP 200 OK

Entities present in the system after the migration

58

11 Create a taxi using driver D2,
vehicle V2 and permit/ADS P2.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000012"
 },
 "vehicle": {
 "licence_plate": "FAA0012"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L2006-221166-22"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T4”,
 ...
 }
]
}

12 Start sending taxi positions and
status with the taxi created (T4).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T4",
 ...
 }
]
}

HTTP 200 OK

5.3.3 Migrate a vehicle and the drivers who drive it at the same time
This migration can be performed as soon as an owner transmits the new license plate in conformity
with Bill 17 (No T license plate).

This scenario is an alternative to scenarios described in sections 5.3.1 and 5.3.2. If this scenario
does not simplify the changes required by Bill 17 in the operator's IT system, then just ignore it and
use the two-step migration as described in sections 5.3.1 and 5.3.2 instead.

This scenario is more complex, because during the transition period, a driver can drive the migrated
vehicle and the non-migrated vehicle. For this scenario to succeed, the operator's IT system must
be able to continue to identify the driver by the pocket number when he is driving the non-migrated
vehicle and identify the same driver by his driving license number when he drives the migrated
vehicle.

Note that in order to keep this scenario simple, it presents the case where the migrated vehicle is
driven by a single driver. However, the operator's IT system must also support the scenario
where the migrated vehicle is driven by multiple drivers.

59

Step Action Request Response Icon

Initial State

1 Create a driver with Montréal-600
department.

POST /api/drivers
{
 "data": [
 {
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "00011",
 "departement": {
 "nom": "Montréal",
 "numero": "660"
 }
 }
]
}

HTTP 201 Created

2 Create a vehicle with a ‘T’ licence
plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00011A",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

60

3 Create a permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000011A",
 "vdm_vignette": "5511",
 ...
 }
]
}

HTTP 201 Created

4

Create the first taxi driven by D1
and link it to V1 and P1.

This taxi will remain unmigrated at
the end of this test.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "660",
 "professional_licence": "00011"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T1”,
 ...
 }
]
}

5
Start sending taxi positions and
status with the taxi that will not be
migrated. (T1)

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T1",
 ...
 }
]
}

HTTP 200 OK

6 Create a second vehicle with a ‘T’
licence plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00022B",
 "type_": "mpv",
 "constructor": "toyota",
 "model": "camry"
 ...
 }
]
}

HTTP 201 Created

61

7 Create a second permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000022B",
 "vdm_vignette": "5522",
 ...
 }
]
}

HTTP 201 Created

8

Create a second taxi driven by
driver D1 and link it to V2 and P2.

This taxi will be migrated in the
Test section.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000022B"
 },
 "vehicle": {
 "licence_plate": "T00022B"
 },
 "driver": {
 "departement": "660",
 "professional_licence": "00011"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T2”,
 ...
 }
]
}

Test

9

In accordance with Bill 17, create a
driver, identical to D1 but using his
driving license number and
Québec-1000 department.

For more details on how to submit
a driver in accordance with Bill 17,
see the description of department
and professional licence in section
2.1

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "L3006-221166-33"
 }
]
}

HTTP 201 Created

10
In accordance with Bill 17, create a
vehicle, identical to V2 but using a
license plate without T prefix.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FCC0013",
 "type_": "mpv",
 "constructor": "toyota",
 "model": "camry"
 ...
 }
]
}

HTTP 201 Created

62

11

In accordance with Bill 17, create a
permit/ADS identical to P2 but with
zone Québec-1000 and SAAQ file
number.

For more details on how to submit
a permit/ADS in accordance with
Bill 17, see the description of insee
and numero in section 2.3

POST /api/ads
{
 "data": [
 {
 "insee": "1000",
 "numero": "163000013",
 "owner_name": "Taxi-Pro",
 ...
 }
]
}

HTTP 200 OK

12 Create a taxi driven by driver D3
and link it to V3 and P3.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "163000013"
 },
 "vehicle": {
 "licence_plate": "T00013C"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L3006-221166-33"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T3”,
 ...
 }
]
}

13 Start sending taxi positions and
status with the taxi created (T3).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T3",
 ...
 }
]
}

HTTP 200 OK

14

Taxi T1 continues to send
positions and status. T1 remains
unmigrated.

At this point John Doe drives a
migrated vehicle (V3) as driver D3
and an unmigrated vehicle (V1) as
driver D1.

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T1",
 ...
 }
]
}

HTTP 200 OK

Entities present in the system after the migration

5.3.4 Unallowed migration paths
Owners will not all regularize at the same time their situation with SAAQ. During the transition
period, certain vehicles will be migrated and others will not. However, when a taxi is linked to an
owner (ADS) in the Québec-1000 zone, that taxi must be fully migrated. (Driver, vehicle and
owner/license/ADS)

1. It is not possible to migrate an owner (ADS) without migrating the drivers that drive the
vehicle belonging to that owner.

As soon as possible, drivers must send their driver’s license number to the operator.

If the owner (ADS) is in the Québec-1000 zone, then a linked driver must be in the
Québec-1000 department. Otherwise a http 400 error will occur.

2. It is not possible to migrate the owner without migrating the vehicle.

Following the license plate change, the owner must communicate his SAAQ file number and
his new license plate number to the operator.

If the owner is in the Québec-1000 zone, then the license plate must not start with a T;
otherwise a http 400 error will occur.

63

5.3.5 Many vehicles can have the same owner
As described in section 2.3, following adoption of Bill 17, the meaning of ADS has changed from
permit to owner’s license. This example illustrates this change. Please make sure this change is
well supported by the operator's IT system.

To simplify, all vehicles will be driven by the same driver.

64

Test

1 Create a driver in the
Québec-1000 department.

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "L1006-221166-11"
 }
]
}

HTTP 201 Created

2 Create a vehicle.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FAA0011",
 ...
 }
]
}

HTTP 201 Created

3 Create a second vehicle.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FBB0022",
 ...
 }
]
}

HTTP 201 Created

4

Create a permit/ADS in the zone
Québec-1000 and SAAQ file
number.

For more details on how to submit
an ADS in accordance with Bill 17,
see the description of insee and
numero in section 2.3

POST /api/ads
{
 "data": [
 {
 "insee": "1000",
 "numero": "161000011",
 "owner_name": "Taxi-Pro",
 ...
 }
]
}

HTTP 200 OK

65

5 Create a taxi driven by driver D1
and link it to V1 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000011"
 },
 "vehicle": {
 "licence_plate": "FAA0011"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-11"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T1”,
 ...
 }
]
}

6 Create a second taxi driven by
driver D1 and link it to V2 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000011"
 },
 "vehicle": {
 "licence_plate": "FBB0022"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-11"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T2”,
 ...
 }
]
}

7 Start sending taxi positions and
status with the taxi T1.

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T1",
 ...
 }
]
}

HTTP 200 OK

8 Start sending taxi positions and
status with the taxi T2.

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T2",
 ...
 }
]
}

HTTP 200 OK

Entities present in the system after the test

66

